By Topic

A Theoretical and Empirical Study of Search-Based Testing: Local, Global, and Hybrid Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harman, M. ; CREST Centre, King''s Coll. London, London, UK ; McMinn, P.

Search-based optimization techniques have been applied to structural software test data generation since 1992, with a recent upsurge in interest and activity within this area. However, despite the large number of recent studies on the applicability of different search-based optimization approaches, there has been very little theoretical analysis of the types of testing problem for which these techniques are well suited. There are also few empirical studies that present results for larger programs. This paper presents a theoretical exploration of the most widely studied approach, the global search technique embodied by Genetic Algorithms. It also presents results from a large empirical study that compares the behavior of both global and local search-based optimization on real-world programs. The results of this study reveal that cases exist of test data generation problem that suit each algorithm, thereby suggesting that a hybrid global-local search (a Memetic Algorithm) may be appropriate. The paper presents a Memetic Algorithm along with further empirical results studying its performance.

Published in:

Software Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 2 )