We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Computing Accurate Correspondences across Groups of Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cootes, T.F. ; Imaging Sci. & Biomed. Eng. Res. Group, Univ. of Manchester, Manchester, UK ; Twining, C.J. ; Petrovic, V.S. ; Babalola, K.O.
more authors

Groupwise image registration algorithms seek to establish dense correspondences between sets of images. Typically, they involve iteratively improving the registration between each image and an evolving mean. A variety of methods have been proposed, which differ in their choice of objective function, representation of deformation field, and optimization methods. Given the complexity of the task, the final accuracy is significantly affected by the choices made for each component. Here, we present a groupwise registration algorithm which can take advantage of the statistics of both the image intensities and the range of shapes across the group to achieve accurate matching. By testing on large sets of images (in both 2D and 3D), we explore the effects of using different image representations and different statistical shape constraints. We demonstrate that careful choice of such representations can lead to significant improvements in overall performance.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 11 )