By Topic

An Adaptive and Stable Method for Fitting Implicit Polynomial Curves and Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo Zheng ; 3rd Dept., Univ. of Tokyo, Tokyo, Japan ; Takamatsu, J. ; Ikeuchi, K.

Representing 2D and 3D data sets with implicit polynomials (IPs) has been attractive because of its applicability to various computer vision issues. Therefore, many IP fitting methods have already been proposed. However, the existing fitting methods can be and need to be improved with respect to computational cost for deciding on the appropriate degree of the IP representation and to fitting accuracy, while still maintaining the stability of the fit. We propose a stable method for accurate fitting that automatically determines the moderate degree required. Our method increases the degree of IP until a satisfactory fitting result is obtained. The incrementability of QR decomposition with Gram-Schmidt orthogonalization gives our method computational efficiency. Furthermore, since the decomposition detects the instability element precisely, our method can selectively apply ridge regression-based constraints to that element only. As a result, our method achieves computational stability while maintaining fitting accuracy. Experimental results demonstrate the effectiveness of our method compared with prior methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 3 )