Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rodriguez, J.D. ; Comput. Sci. Fac., Univ. of the Basque Country (UPV-EHU), San Sebastian, Spain ; Perez, A. ; Lozano, J.A.

In the machine learning field, the performance of a classifier is usually measured in terms of prediction error. In most real-world problems, the error cannot be exactly calculated and it must be estimated. Therefore, it is important to choose an appropriate estimator of the error. This paper analyzes the statistical properties, bias and variance, of the k-fold cross-validation classification error estimator (k-cv). Our main contribution is a novel theoretical decomposition of the variance of the k-cv considering its sources of variance: sensitivity to changes in the training set and sensitivity to changes in the folds. The paper also compares the bias and variance of the estimator for different values of k. The experimental study has been performed in artificial domains because they allow the exact computation of the implied quantities and we can rigorously specify the conditions of experimentation. The experimentation has been performed for two classifiers (naive Bayes and nearest neighbor), different numbers of folds, sample sizes, and training sets coming from assorted probability distributions. We conclude by including some practical recommendation on the use of k-fold cross validation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 3 )