By Topic

Cross-Domain Learning from Multiple Sources: A Consensus Regularization Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fuzhen Zhuang ; Key Lab. of Intell. Inf. Process., Chinese Acad. of Sci., Beijing, China ; Ping Luo ; Hui Xiong ; Yuhong Xiong
more authors

Classification across different domains studies how to adapt a learning model from one domain to another domain which shares similar data characteristics. While there are a number of existing works along this line, many of them are only focused on learning from a single source domain to a target domain. In particular, a remaining challenge is how to apply the knowledge learned from multiple source domains to a target domain. Indeed, data from multiple source domains can be semantically related, but have different data distributions. It is not clear how to exploit the distribution differences among multiple source domains to boost the learning performance in a target domain. To that end, in this paper, we propose a consensus regularization framework for learning from multiple source domains to a target domain. In this framework, a local classifier is trained by considering both local data available in one source domain and the prediction consensus with the classifiers learned from other source domains. Moreover, we provide a theoretical analysis as well as an empirical study of the proposed consensus regularization framework. The experimental results on text categorization and image classification problems show the effectiveness of this consensus regularization learning method. Finally, to deal with the situation that the multiple source domains are geographically distributed, we also develop the distributed version of the proposed algorithm, which avoids the need to upload all the data to a centralized location and helps to mitigate privacy concerns.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 12 )