Cart (Loading....) | Create Account
Close category search window
 

A 20-Gb/s Full-Rate Linear Clock and Data Recovery Circuit With Automatic Frequency Acquisition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jri Lee ; Electr. Eng. Dept., Nat. Taiwan Univ., Taipei, Taiwan ; Ke-Chung Wu

A 20-Gb/s full-rate clock and data recovery circuit employing a mixer-type linear phase detector and automatic frequency locking technique is described. The phase detector achieves high-speed operation by mixing the clock with the data-transition pulses, providing output proportional to the phase error. The frequency acquisition loop utilizes the data phases rather than the clock phases to distill the frequency difference, and no external reference is used in this design. Fabricated in 90-nm CMOS technology, this circuit reveals rms and peak-to-peak jitter of 480 fs and 4.22 ps in response to a 231 -1 PRBS on the recovered clock while consuming 154 mW from a 1.5-V supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.