System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Soft-switching hybrid FSO/RF links using short-length raptor codes: design and implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenzhe Zhang ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Hranilovic, S. ; Ce Shi

Free-space optical (FSO) links offer gigabit per second data rates and low system complexity, but suffer from atmospheric loss due to fog and scintillation. Radio-frequency (RF) links have lower data rates, but are relatively insensitive to weather. Hybrid FSO/RF links combine the advantages of both links. Currently, selection or "hard-switching" is performed between FSO or RF links depending on feedback from the receiver. This technique is inefficient since only one medium is used at a time. In this paper, we develop a "soft-switching" scheme for hybrid FSO/RF links using short-length Raptor codes. Raptor encoded packets are sent simultaneously on both links and the code adapts to the conditions on either link with very limited feedback. A set of short-length Raptor codes (k = 16 to 1024) are presented which are amenable to highspeed implementation. A practical Raptor encoder and decoder are implemented in an FPGA and shown to support a 714 Mbps data rate with a 97 mW power consumption and 26360 gate circuit scale. The performance of the switching algorithms is simulated in a realistic channel model based on climate data. For a 1 Gbps FSO link combined with a 96 Mbps WiMAX RF link, an average rate of over 472 Mbps is achieved using the implemented Raptor code while hard-switching techniques achieved 112 Mbps on average.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:27 ,  Issue: 9 )