By Topic

Automatic image annotation based on decision tree machine learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lixing Jiang ; Sch. of Inf. Sci. & Technol., Southwest Jiaotong Univ., Chengdu, China ; Jin Hou ; Zeng Chen ; Dengsheng Zhang

With the rapid development of digital imaging technology, image annotation is an important and challenging task in image retrieval. At present, many machine learning methods have been applied to solve the problem of automatic image annotation (AIA). However, there exists enormous semantic expressive gap between the low-level image features and high-level semantic concepts. Due to the problem, the annotation performance of existing methods is not satisfactory, and needs to be further improved. This paper proposes an automatic annotation framework via a novel decision tree-based Bayesian (DTB) machine learning algorithm. It is a hybrid approach that attempts to utilize the advantages of both DT and Naive-Bayesian (NB). We firstly segment an image into different regions and extract low-level features of each region. From these features, high-level semantic concepts are obtained using a DTB learning algorithm. Finally, experiments conducted on the Corel dataset demonstrate the effectiveness of DTB machine learning. The DTB can not only enhance the classification accuracy, but also associate low-level region features with high-level image concepts. This method presents the advantages of the Bayesian method and the DT. Moreover, this semantic interpretation capability is a natural simulation of human learning.

Published in:

Cyber-Enabled Distributed Computing and Knowledge Discovery, 2009. CyberC '09. International Conference on

Date of Conference:

10-11 Oct. 2009