By Topic

Mining generalized features for writer identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muda, A.K. ; Univ. Teknikal Malaysia Melaka, Ayer Keroh, Malaysia ; Shamsuddin, S.M. ; Darus, M.

This paper proposes generalized features of various handwriting in forensic documents for writer identification. In forensic documents, graphologies need to scrutinize, analyze and evaluate the features of suspected authors from questioned handwriting and compared these documents with the original handwriting. This is due to the uniqueness of the shape and style of handwriting that can be used for author's authentication. In this study, by acquiring the individuality features from these question documents will lead to the proposed concept of authorship invarianceness. However, this paper will focus on discretization concept that will probe authors' individuality representation by mining the features granularly. This is done by partitioning the attributes into writers' intervals. Our experiments have illustrated that the proposed discretization gives better identification rates compared to non-discretized features.

Published in:

Data Mining and Optimization, 2009. DMO '09. 2nd Conference on

Date of Conference:

27-28 Oct. 2009