By Topic

Exploratory Analysis of Protein Translation Regulatory Networks Using Hierarchical Random Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wu, D.D. ; Coll. of Inf. Sci. & Technol., Drexel Univ., Philadelphia, PA, USA ; Xiaohua Hu ; Tingting He

Protein translation is a vital cellular process for any living organism. The availability of interaction databases provides an opportunity for researchers to exploit the immense amount of data in silico such as studying biological networks. There has been an extensive effort using computational methods in deciphering the transcriptional regulatory networks. However, research on translation regulatory networks has caught little attention in the bioinformatics and computational biology community. In this paper, we present an exploratory analysis of yeast protein translation regulatory networks using hierarchical random graphs. We derive a protein translation regulatory network from a protein-protein interaction dataset. Using a hierarchical random graph model, we show that the network exhibits well organized hierarchical structure. In addition, we apply this technique to predict missing links in the network. The results have potential implications for better understanding mechanisms of translational control from a system's perspective.

Published in:

Bioinformatics and Biomedicine, 2009. BIBM '09. IEEE International Conference on

Date of Conference:

1-4 Nov. 2009