By Topic

A computationally efficient shape analysis via level sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Z. S. G. Tari ; Mech. & Ind. Eng. Dept., Northeastern Univ., Boston, MA, USA ; J. Shah ; H. Pien

In recent years, curve evolution has been applied to smoothing of shapes and shape analysis with considerable success, especially in biomedical image analysis. The multiscale analysis provides information regarding parts of shapes, their axes or centers and shape skeletons. Here, the authors show that the level sets of an edge-strength function provide essentially the same shape analysis as provided by curve evolution. The new method has several advantages over the method of curve evolution. Since the governing equation is linear, the implementation is simpler and faster. The same equation applies to problems of higher dimension. An important advantage is that unlike the method of curve evolution, the new method is applicable to shapes which may have junctions such as triple points. The edge-strength may be calculated from raw images without first extracting the shape outline. Thus the method can be applied to raw images. The method provides a way to approach the segmentation problem and shape analysis within a common integrated framework

Published in:

Mathematical Methods in Biomedical Image Analysis, 1996., Proceedings of the Workshop on

Date of Conference:

21-22 Jun 1996