By Topic

Zero-Crossing-Based Ultra-Low-Power A/D Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hae-Seung Lee ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Brooks, L. ; Sodini, C.G.

Since the first demonstration of a comparator-based switched-capacitor circuit, analog-to-digital (A/D) converters based on virtual ground detection have made steady and significant progress. Comparators have been replaced by zero-crossing detectors, leading to the development of zero-crossing based circuits for faster speed and lower power. All facets of performance including the sampling rate, effective number of bits, noise floor, and figure-of-merit have improved substantially. This paper focuses on recent implementations of zero-crossing based A/D converters and discusses the technical issues unique to these A/D converters as well as solutions that have been developed to improve their performance and practicality. A series of prototype designs whose performance ranges from 8 bit, 200 MS/s to 12 bit, 50 MS/s are described. The ultimate low power potentials of these A/D converters are compared with various different types of complementary metal-oxide-semiconductor A/D converters from a fundamental thermal noise standpoint.

Published in:

Proceedings of the IEEE  (Volume:98 ,  Issue: 2 )