By Topic

Dynamic Surface Profilometry and Resonant-Mode Detection for Microstructure Characterization Using Nonconventional Stroboscopic Interferometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang-Chia Chen ; Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan ; Xuan-Loc Nguyen ; Hsin-Sing Huang ; Jin-Liang Chen

In this paper, an innovative method of automatic resonant-mode detection employing nonconventional stroboscopic interferometry is developed for nanoscale dynamic characterization of microstructures. Considering that a tested microstructure having an individual vibrating excitation source cannot be analyzed directly by the traditional stroboscopic method, an optical microscopy based on new stroboscopic interferometry was established to achieve resonant-mode detection and full-field vibratory out-of-plane surface profilometry of microstructures. To verify the effectiveness of the developed methodology, a crossbridge microbeam was measured to analyze the resonant vibratory modes and full-field dynamic-mode characterization. The experimental results confirm that the dynamic behavior of the microstructures can be accurately characterized with satisfactory mode-detection accuracy and surface profilometry.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 3 )