Cart (Loading....) | Create Account
Close category search window
 

Virtual Models for Prediction of Wind Turbine Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kusiak, A. ; Intell. Syst. Lab., Univ. of Iowa, Iowa City, IA, USA ; Wenyan Li

In this paper, a data-driven methodology for the development of virtual models of a wind turbine is presented. To demonstrate the proposed methodology, two parameters of the wind turbine have been selected for modeling, namely, power output and rotor speed. A virtual model for each of the two parameters is developed and tested with data collected at a wind farm. Both models consider controllable and noncontrollable parameters of the wind turbine, as well as the delay effect of wind speed and other parameters. To mitigate data bias of each virtual model and ensure its robustness, a training set is assembled from ten randomly selected turbines. The performance of a virtual model is largely determined by the input parameters selected and the data mining algorithms used to extract the model. Several data mining algorithms for parameter selection and model extraction are analyzed. The research presented in the paper is illustrated with computational results.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:25 ,  Issue: 1 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.