By Topic

Electrical Modeling and Characterization of Through Silicon via for Three-Dimensional ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Katti, G. ; IMEC, Leuven, Belgium ; Stucchi, M. ; de Meyer, K. ; Dehaene, W.

Three-dimensional ICs provide a promising option to build high-performance compact SoCs by stacking one or more chips vertically. Through silicon vias (TSVs) form an integral component of the 3-D IC technology by enabling vertical interconnections in 3-D ICs. TSV resistance, inductance, and capacitance need to be modeled to determine their impact on the performance of a 3-D circuit. In this paper, the RLC parameters of the TSV are modeled as a function of physical parameters and material characteristics. Models are validated with the numerical simulators like Raphael and Sdevice and with experimental measurements. The TSV RLC model is applied to predict the resistance, inductance, and capacitances of small-geometry TSV architectures. Finally, this paper also proposes a simplified lumped TSV model that can be used to simulate 3-D circuits.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 1 )