By Topic

On Lead-Acid-Battery Resistance and Cranking-Capability Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Cugnet, M. ; IMS-LAPS Lab., Talence, France ; Sabatier, J. ; Laruelle, S. ; Grugeon, S.
more authors

With hybrid and electric vehicle developments, battery-monitoring systems have to meet the new requirements of the automobile industry. This paper deals with one of them, the battery's ability to start a vehicle, also called battery crankability, through battery-resistance estimation. A fractional-order model obtained by system identification is used to estimate the internal resistance of lead-acid batteries. Fractional-order modeling permits an accurate simulation of the battery electrical behavior with a low number of parameters. Moreover, the high-frequency gain of the fractional model is directly linked to the battery resistance. A resistance-estimation method based on a frequency-invalidation method is, thus, proposed. It is demonstrated that the battery's available power that defines battery crankability is correlated to the battery resistance. Thus, a battery-crankability estimator using the battery resistance is suggested. Validation tests are carried out with various batteries. This estimator cannot be embedded in a microcontroller due to the linear-matrix-inequality-based optimization algorithm in the invalidation-model method used. A simplified algorithm is finally proposed, and its efficiency is proved.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 3 )