By Topic

A Neuron-MOS-Based VLSI Implementation of Pulse-Coupled Neural Networks for Image Feature Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Chen ; Dept. of Electron. Eng., Univ. of Tokyo, Tokyo, Japan ; Tadashi Shibata

An analog circuit for implementing pulse-coupled neural networks (PCNNs) in very-large-scale integration (VLSI) hardware has been developed using the Neuron-MOS (νMOS) technology. PCNNs are biologically inspired models having powerful ability for image feature generation. With the νMOS technology, weighted sum of multiple input signals, which is an essential of PCNNs, is implemented simply by the capacitive coupling effect in a νMOS block. By employing the switched floating gates in the νMOS blocks as temporary analog memories, the storage of image data is simply realized. Moreover, the function of decay generation, which is crucial for emulating PCNNs neuronal dynamics, is also merged into a νMOS block by utilizing the input-terminal capacitors in it. With such techniques, the circuit achieves a purely voltage-mode implementation of PCNNs in a compact structure. Inheriting the merits of PCNNs, the circuit has good discriminability against different patterns as well as robustness against rotation and translation of identical patterns, which is analogous to human image perception. The performance of the circuit has been verified by the measurements of a proof-of-concept chip fabricated in a 0.35- μm double-polysilicon CMOS technology.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 6 )