By Topic

Stable Sheet-Beam Transport in Periodic Nonsymmetric Quadrupole Field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Zhanliang Wang ; Nat. Key Lab. of High Power Vacuum Electron., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Yubin Gong ; Yanyu Wei ; Zhaoyun Duan
more authors

Stable sheet electron-beam transport is critical for sheet-beam microwave device which is attractive for high-power millimeter wave to terahertz-regime radiation. This paper studies the stable sheet-beam transport in periodic nonsymmetric quadrupole field. First, the conditions for stable round- and sheet-beam transport in periodic magnetic quadrupole field are deduced. In the deduction, we find that the symmetric quadrupole field and the space-charge field of sheet beam are not well matched. In order to settle this problem, we use periodic nonsymmetric quadrupole field instead of periodic symmetric quadrupole field to transport sheet beam. Finally, 3-D PIC simulations verify the conditions for stable sheet-beam transport and show that periodic nonsymmetric quadrupole field is intrinsically well suited for sheet-beam transport.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 1 )