By Topic

Slow and Superluminal Light Pulses Via EIT in a 20-m Acetylene-Filled Photonic Microcell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wheeler, N.V. ; Phys. Dept., Univ. of Bath, Bath, UK ; Light, P.S. ; Couny, F. ; Benabid, F.

We have developed an all-fiber system where we generate electromagnetically induced transparencies in a 20-m acetylene-filled photonic microcell. Using this system, pulses of probe light were delayed and advanced by up to 5 and 1 ns, respectively. The delay/advance is tunable through the probe detuning and the coupling Rabi frequency. Through optimization of experimental parameters such as acetylene pressure, coupling laser power and decoherence rates it is shown that a pulse delay of 7 ns/m is possible. Limitations imposed on the fiber length by resonance group velocity dispersion and spectral reshaping are also discussed. In addition to optical buffering, we suggest a slow-light-based fiber optical gyroscope with an enhanced SNR of ~92.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 6 )