By Topic

Fractional Differential Mask: A Fractional Differential-Based Approach for Multiscale Texture Enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi-Fei Pu ; School of Computer Science and Technology, Sichuan University, Chengdu, China ; Ji-Liu Zhou ; Xiao Yuan

In this paper, we intend to implement a class of fractional differential masks with high-precision. Thanks to two commonly used definitions of fractional differential for what are known as Grumwald-Letnikov and Riemann-Liouville, we propose six fractional differential masks and present the structures and parameters of each mask respectively on the direction of negative x-coordinate, positive x-coordinate, negative y-coordinate, positive y-coordinate, left downward diagonal, left upward diagonal, right downward diagonal, and right upward diagonal. Moreover, by theoretical and experimental analyzing, we demonstrate the second is the best performance fractional differential mask of the proposed six ones. Finally, we discuss further the capability of multiscale fractional differential masks for texture enhancement. Experiments show that, for rich-grained digital image, the capability of nonlinearly enhancing complex texture details in smooth area by fractional differential-based approach appears obvious better than by traditional integral-based algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 2 )