Cart (Loading....) | Create Account
Close category search window
 

Radar-Coding and Geocoding Lookup Tables for the Fusion of GIS and SAR Data in Mountain Areas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Petillot, I. ; Lab. d''Inf., Syst., Traitement de l''Inf. et de la Connaissance (LISTIC), Univ. de Savoie, Annecy-le-Vieux, France ; Trouve, E. ; Bolon, P. ; Julea, A.
more authors

Synthetic aperture radar (SAR) image orthorectification induces an important alteration of information due to the side-looking geometry of SAR acquisition. In high-relief areas, the difficulty is increased by the foldover effect: The images acquired with low incidence angles cannot be registered by a bijective transformation like polynomial transformations, as usually proposed by conventional software. In this letter, a simple and efficient method, fitted to geocoded data and SAR images, is introduced to propose a generic coregistration tool that takes SAR geometry into account without requiring the exact sensor model, specific parameters, and precise navigation data. This method is based on a simulated SAR image and on the computation of lookup tables (LUTs) that represent the coordinate transform from one geometry to the other. Results are presented on a high-relief area in the Alps, where satellite and airborne SAR images are used for glacier evolution monitoring. A comparison to other sensor-independent approaches has been performed, showing that the proposed approach performs better in mountain areas. The resulting LUTs allow merging SAR data with the georeferenced data, either in ground geometry by orthorectifying the SAR information or in radar geometry by the inverse transformation, namely, radar-coding data from a geographic information system, to improve the analysis of SAR images and the result interpretation.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 2 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.