Cart (Loading....) | Create Account
Close category search window
 

Validation of Retention Modeling as a Trap-Profiling Technique for SiN-Based Charge-Trapping Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

We applied the developed trap spectroscopy by charge injection and sensing to validate the extraction of the silicon nitride trap distribution (both in space and energy) from the modeling of retention transients of charge-trapping memories. We compared three different types of silicon nitrides using these two techniques, and similar distributions were extracted, thus confirming the validity of the charge profiles resulting from the modeling of retention transients and the physics of the proposed model, based on two main mechanisms of charge loss: Poole-Frenkel emission (dominating at high temperature) and direct tunneling (dominating at room temperature).

Published in:

Electron Device Letters, IEEE  (Volume:31 ,  Issue: 1 )

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.