Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Symmetrical Hybrid Multilevel DC–AC Converters With Reduced Number of Insulated DC Supplies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruiz-Caballero, D.A. ; Dept. of Electr. Eng., Pontificia Univ. Catolica de Valparaiso, Valparaiso, Chile ; Ramos-Astudillo, R.M. ; Mussa, S.A. ; Heldwein, M.L.

Novel symmetric hybrid multilevel topologies are introduced for both single- and three-phase medium-voltage high-power systems. The topology conception is presented in detail, where a three-level switching cell with low component count, and its modulation pattern give the origin of the proposed converters. Voltage sharing and low output-voltage distortion are achieved. The theoretical frequency spectra are derived. Switching devices are separated into high- and low-frequency devices, generating hybrid converters. Five-level three-phase topologies are generated from only three insulated dc sources, while the number of semiconductors is the same as for the cascaded H bridge. Both simulation and experimental results are provided showing the validity of the analysis.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 7 )