By Topic

Effects of NiFe/Co Insertion at the [Pd/Co] and Cu Interface on the Magnetic and GMR Properties in Perpendicularly Magnetized [Pd/Co]/Cu/[Co/Pd] Pseudo Spin-Valves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Naganivetha Thiyagarajah ; $^{1}$Biomagnetics Laboratory (BML), Department of Electrical and Computer Engineering,, National University of Singapore,, Singapore ; Lin Lin ; Seongtae Bae

Perpendicularly magnetized [Pd/Co]2/Cu/[Co/Pd]4 pseudo spin-valves (PSVs) are promising in spintronic device applications. However, a large coercivity of the soft [Pd/Co]2 ferromagnetic layer due to a high perpendicular anisotropy is revealed as a drawback for the device applications. In order to reduce the coercivity of the soft layer, a thin NiFe layer of 0-1 nm was inserted at the interface between the soft [Pd/Co]2 layer and the Cu spacer. It was observed that the soft layer coercivity dropped dramatically from 250 to 40 Oe (85% reduction) by increasing the NiFe thickness. The main physical reason for this decrease is the reduction in perpendicular anisotropy caused by the in-plane anisotropy of the NiFe layer with a thickness larger than 0.4 nm. The interlayer coupling field was also increased mainly due to the increase in topological coupling induced by a rougher surface roughness attributed to Ni-Cu inter-diffusion. Due to this Ni-Cu intermixing, there is an increase in spin-independent scattering at the interfaces leading to an incidental decrease in the giant magnetoresistance (GMR). To improve the GMR performance in this structure, a thin Co layer of 0.1-0.6 nm was inserted at the interface between the NiFe layer and the Cu spacer while keeping the total NiFe/Co thickness constant at 0.5 and 0.7 nm, respectively. The Co insertion was found to be effective in protecting against the Ni-Cu intermixing leading to a 26% and 70% improvement in the GMR ratio up to 0.3 nm of Co insertion thickness with a further 65% and 75% reduction in the soft layer coercivity for a NiFe initial thickness of 0.5 and 0.7 nm, respectively. The experimentally confirmed results in this work demonstrate that NiFe/Co insertion at the interface between [Co/Pd] ferromagnetic layer and Cu spacer is effective in obtaining an optimum condition where the soft layer coercivity (anisotropy) is reduced while maintaining higher GMR ratio in the perpen- - dicularly magnetized [Pd/Co]/Cu/[Co/Pd] PSVs.

Published in:

IEEE Transactions on Magnetics  (Volume:46 ,  Issue: 4 )