By Topic

Steerable Wavelet Frames Based on the Riesz Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Held, S. ; Zentrum Math., Tech. Univ. Munchen, Munich, Germany ; Storath, M. ; Massopust, P. ; Forster, B.

We consider an extension of the 1-D concept of analytical wavelet to n-D which is by construction compatible with rotations. This extension, called a monogenic wavelet, yields a decomposition of the wavelet coefficients into amplitude, phase, and phase direction. The monogenic wavelet is based on the hypercomplex monogenic signal which is defined using Riesz transforms and perfectly isotropic wavelets frames. Employing the new concept of Clifford frames, we can show that the monogenic wavelet generates a wavelet frame. Furthermore, this approach yields wavelet frames that are steerable with respect to direction. Applications to descreening and contrast enhancement illustrate the versatility of this approach to image analysis and reconstruction.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 3 )