We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Global Modeling Strategy of Parasitic Coupled Currents Induced by Minority-Carrier Propagation in Semiconductor Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lo Conte, F. ; Ecole Polytech. Federate de Lausanne, Lausanne, Switzerland ; Sallese, J.-M. ; Pastre, M. ; Krummenacher, F.
more authors

This paper presents a modeling strategy to simulate the propagation of electrical perturbations induced by direct biasing of substrate junctions. Usually, this is done by identifying parasitic substrate devices such as bipolar transistors. However, mapping a topology with these bipolar transistors rapidly reaches its limits when several junctions are acting at the same time. In this paper, we propose a new modeling methodology of parasitic signals. It relies on a generalized model of p-n junctions and resistances that takes into account minority-carrier densities and gradients at the boundaries. We show that bipolar-transistor- and thyristor-related effects can be obtained from a network interconnection of these extended devices. Furthermore, we show that this modeling approach could be easily extended to simulate complex 3-D layouts.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 1 )