Cart (Loading....) | Create Account
Close category search window

A 3-D Hybrid Finite Element Model to Characterize the Electrical Behavior of Cutaneous Tissues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hartinger, A.E. ; Inst. de Genie Biomed., Ecole Polytech. de Montreal, Montreal, QC, Canada ; Guardo, R. ; Kokta, V. ; Gagnon, H.

Finite element modeling of the skin is useful to study the electrical properties of cutaneous tissues and gain a better understanding of the current distribution within the skin. Such an epithelial finite element model comprises extremely thin structures like cellular membranes, nuclear membranes, and the extracellular fluid. Meshing such narrow spaces considerably increases the number of elements leading to longer computing time. This also greatly reduces the number of epithelial cells that can be assembled before reaching computing limitations. To avoid the problem of meshing extremely narrow spaces while unnecessarily increasing the number of elements, we present a new hybrid modeling approach to develop a 3-D finite element model of the skin. This skin model comprises all skin layers, different lesion types, and a complete electrode model. It is used to analyze the complex electrical behavior of normal and malignant skin tissues. The current distribution within this model is also simulated to assess the depth of field achievable by an electrical impedance tomography system at different operating frequencies.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.