By Topic

Combination of Finite-Element and Analytical Models in the Optimal Multidomain Design of Machines: Application to an Interior Permanent-Magnet Starter Generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper proposes to apply optimal multiphysic models to the design of highly constrained electrical machines, such as interior permanent-magnet (IPM) machine intended for an automotive integrated starter generators. One of the main problems in the use of such optimal approaches remains the accuracy of the models used by the optimizer. In a recent study, we proposed a design model linked to three strong hypotheses: 1) Iron losses are calculated according to the flux density fundamental (sinusoidal approach); 2) flux densities are estimated with a saturated but decoupled d,q reluctant circuit model neglecting the cross saturation effect; and 3) thermal states are indirectly treated with a current density limit. This paper improves these models by using first the finite element method for the determination of flux and iron losses in the machine and then an equivalent thermal steady-state lumped-parameter network. These models are included in the optimization loop and so are evaluated at each iteration. The optimization method uses standard sequential quadratic programming algorithm and Sequential Simplex algorithm. A comparison between the design of an IPM machine with the previous model and the new one will be performed.

Published in:

Industry Applications, IEEE Transactions on  (Volume:46 ,  Issue: 1 )