Cart (Loading....) | Create Account
Close category search window
 

Quasi-Interpolation by Means of Filter-Banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Perez-Villalon, G. ; Dept. de Mat. Aplic. a la Telecomun., Univ. Politec. de Madrid, Madrid, Spain

We consider the problem of approximating a regular function f(t) from its samples, f(nT), taken in a uniform grid. Quasi-interpolation schemes approximate f(t) with a dilated version of a linear combination of shifted versions of a kernel ??(t), specifically fapprox T(t) = ??af[n]??(t/T - n), in a way that the polynomials of degree at most L-1 are recovered exactly. These approximation schemes give order L, i.e., the error is O(TL) where T is the sampling period. Recently, quasi-interpolation schemes using a discrete prefiltering of the samples f(nT) to obtain the coefficients af[n], have been proposed. They provide tight approximation with a low computational cost. In this work, we generalize considering rational filter banks to prefilter the samples, instead of a simple filter. This generalization provides a greater flexibility in the design of the approximation scheme. The upsampling and downsampling ratio r of the rational filter bank plays a significant role. When r = 1, the scheme has similar characteristics to those related to a simple filter. Approximation schemes corresponding to smaller ratios give less approximation quality, but, in return, they have less computational cost and involve less storage load in the system.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.