Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Haptic Classification of Facial Identity in 2D Displays: Configural versus Feature-Based Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
McGregor, T.A. ; Dept. of Psychol., Queen''s Univ., Kingston, ON, Canada ; Klatzky, R.L. ; Hamilton, C. ; Lederman, S.J.

Participants learned through feedback to haptically classify the identity of upright versus inverted versus scrambled faces depicted in simple 2D raised-line displays. We investigated whether identity classification would make use of a configural face representation, as is evidenced for vision and 3D haptic facial displays. Upright and scrambled faces produced equivalent accuracy, and both were identified more accurately than inverted faces. The mean magnitude of the haptic inversion effect for 2D facial identity was a sizable 26 percent, indicating that the upright orientation was ??privileged?? in the haptic representations of facial identity in these 2D displays, as with other facial modalities. However, given the effect of scrambling, we conclude that configural processing was not employed; rather, only local information about the features was used, the features being treated as oriented objects within a body-centered frame of reference. The results indicate a fundamental difference between haptic identification of 2D facial depictions and 3D faces, paralleling a corresponding difference in recognition of nonface objects.

Published in:

Haptics, IEEE Transactions on  (Volume:3 ,  Issue: 1 )
Biometrics Compendium, IEEE