By Topic

Kalman filtering for positioning and heading control of ships and offshore rigs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this article, we have described the main components of a ship motion-control system and two particular motion-control problems that require wave filtering, namely, dynamic positioning and heading autopilot. Then, we discussed the models commonly used for vessel response and showed how these models are used for Kalman filter design. We also briefly discussed parameter and noise covariance estimation, which are used for filter tuning. To illustrate the performance, a case study based on numerical simulations for a ship autopilot was considered. The material discussed in this article conforms to modern commercially available ship motion-control systems. Most of the vessels operating in the offshore industry worldwide use Kalman filters for velocity estimation and wave filtering. Thus, the article provides an up-to-date tutorial and overview of Kalman-filter-based wave filtering.

Published in:

IEEE Control Systems  (Volume:29 ,  Issue: 6 )