Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Scheduling multiple part-types in an unreliable single machine manufacturing system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Perkins, J.R. ; Dept. of Manuf. Eng., Boston Univ., MA, USA ; Srikant, R.

Quadratic approximations to the differential cost-to-go function, which yield linear switching curves, have been extensively studied. In this paper, the authors provide the solution to the partial differential equations associated with the steady-state joint probability density function of the buffer levels for two part-type, single machine flexible manufacturing systems under a linear switching curve (LSC) policy. When there are more than two part-types, the authors derive the density functions under a prioritized hedging point (PHP) policy by decomposing the multiple part-type problem into a sequence of single part-type problems. The expressions for the steady-state density functions are independent of the cost function. Therefore, for additive cost functions that are non-linear in the buffer levels, one can compute the optimal PHP policy, or the more general optimal LSC policy for two part-type problems

Published in:

American Control Conference, Proceedings of the 1995  (Volume:5 )

Date of Conference:

21-23 Jun 1995