By Topic

Classifying Affective States Using Thermal Infrared Imaging of the Human Face

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nhan, B.R. ; Bloorview Res. Inst., Univ. of Toronto, Toronto, ON, Canada ; Chau, T.

In this paper, time, frequency, and time-frequency features derived from thermal infrared data are used to discriminate between self-reported affective states of an individual in response to visual stimuli drawn from the International Affective Pictures System. A total of six binary classification tasks were examined to distinguish baseline and affect states. Affect states were determined from subject-reported levels of arousal and valence. Mean adjusted accuracies of 70% to 80% were achieved for the baseline classifications tasks. Classification accuracies between high and low ratings of arousal and valence were between 50% and 60%, respectively. Our analysis showed that facial thermal infrared imaging data of baseline and other affective states may be separable. The results of this study suggest that classification of facial thermal infrared imaging data coupled with affect models can be used to provide information about an individual's affective state for potential use as a passive communication pathway.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 4 )