By Topic

Performance of Forward-Error Correction Code in 10-Gb/s RSOA-Based WDM PON

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cho, K.Y. ; Dept. of Electr. Eng., KAIST, Daejeon, South Korea ; Agata, A. ; Takushima, Y. ; Chung, Y.C.

We investigate the performance of the forward-error correction (FEC) code for the 10-Gb/s wavelength-division-multiplexed passive optical network (WDM PON) implemented by using reflective semiconductor optical amplifiers (RSOAs) with extremely limited modulation bandwidth and the electronic equalizers to compensate for the degradations resulting from the use of such RSOAs. We show that the error occurrences in this network strongly depend on the bit pattern and the burst errors are likely to occur. Thus, it is important to use the FEC code capable of correcting the burst errors such as Reed-Solomon (RS) code. In addition, since a significant penalty can be induced by the increased line rate resulting from the use of the FEC code, it is necessary to find the optimum redundancy required to minimize the bit-error rate. We also evaluate the tolerance to the chromatic dispersion of the proposed 10-Gb/s WDM PON implemented by using the RS code with the optimum redundancy.

Published in:

Photonics Technology Letters, IEEE  (Volume:22 ,  Issue: 1 )