By Topic

Design and Realization of Wide-Band-Gap ( \sim 2.67 eV) InGaN p-n Junction Solar Cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Balakrishnam R. Jampana ; Dept. of Mater. Sci. & Eng., Univ. of Delaware, Newark, DE, USA ; Andrew G. Melton ; Muhammad Jamil ; Nikolai N. Faleev
more authors

The design of coherently strained InGaN epilayers for use in InGaN p-n junction solar cells is presented in this letter. The X-ray diffraction of the epitaxially grown device structure indicates two InGaN epilayers with indium compositions of 14.8% and 16.8%, which are confirmed by photoluminescence peaks observed at 2.72 and 2.67 eV, respectively. An open-circuit voltage of 1.73 V and a short-circuit current density of 0.91 mA/cm2 are observed under concentrated AM 0 illumination from the fabricated solar cell. The photovoltaic response from the InGaN p-n junction is confirmed by using an ultraviolet filter. The solar cell performance is shown to be related to the crystalline defects in the device structure.

Published in:

IEEE Electron Device Letters  (Volume:31 ,  Issue: 1 )