By Topic

Nonlinear injection locking dynamics and the onset of coherence collapse in external cavity lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tromborg, B. ; TFL Telecommun. Res. Lab., Horsholm, Denmark ; Mork, J.

A theoretical analysis is presented of the experimentally observed collapse of coherence in semiconductor lasers exposed to moderate optical feedback. A main point in the analysis is, that coherence collapse in the delayed-feedback (DFB) system shows up as bistability in a much simpler model which corresponds to an injection locking system. Based on this, the authors derive a simple analytical expression, valid for DFB as well as Fabry-Perot lasers, for the critical feedback level at which coherence collapse sets in. Simulations of the nonlinear injection locking model reveal the presence of complicated nonlinear dynamics with period-doubling bifurcations and coexisting attractors even inside what is normally denoted the stable locking range

Published in:

Quantum Electronics, IEEE Journal of  (Volume:26 ,  Issue: 4 )