By Topic

On Simplified Fast Modal Analysis for Through Silicon Vias in Layered Media Based Upon Full-Wave Solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhonghai Guo ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Guangwen Pan

Based on equivalent magnetic frill array model and Galerkin's procedure, we present a simplified full-wave algorithm to characterize the propagation behavior and signal integrity of massive number of through silicon vias (TSV) for the 3-D system-in-package (SIP) and system-on-chip (SOC) applications. The proposed method employs the Fourier transform and takes advantage of circular cylindrical shapes with Bessel's functions and the addition theorem to solve the Helmholtz equations without resorting numerical discretization. As a result, it provides closed form solutions with high precision. Since the algorithm does not rely on numerically generated meshes, it gains one to two orders of magnitude in speed, compared to popular commercial software packages. Numerical examples demonstrate that the new method provides good agreement with the HFSS results. As the number of vias increases the new method gains more in both speed and accuracy.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:33 ,  Issue: 2 )