Cart (Loading....) | Create Account
Close category search window
 

Homography-Based Control Scheme for Mobile Robots With Nonholonomic and Field-of-View Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lopez-Nicolas, G. ; Dept. of Inf. e Ing. de Sist., Univ. de Zaragoza, Zaragoza, Spain ; Gans, N.R. ; Bhattacharya, S. ; Sagues, C.
more authors

In this paper, we present a visual servo controller that effects optimal paths for a nonholonomic differential drive robot with field-of-view constraints imposed by the vision system. The control scheme relies on the computation of homographies between current and goal images, but unlike previous homography-based methods, it does not use the homography to compute estimates of pose parameters. Instead, the control laws are directly expressed in terms of individual entries in the homography matrix. In particular, we develop individual control laws for the three path classes that define the language of optimal paths: rotations, straight-line segments, and logarithmic spirals. These control laws, as well as the switching conditions that define how to sequence path segments, are defined in terms of the entries of homography matrices. The selection of the corresponding control law requires the homography decomposition before starting the navigation. We provide a controllability and stability analysis for our system and give experimental results.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:40 ,  Issue: 4 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.