By Topic

An Affine Arithmetic-Based Methodology for Reliable Power Flow Analysis in the Presence of Data Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vaccaro, A. ; Dept. of Eng., Univ. of Sannio, Benevento, Italy ; Canizares, C.A. ; Villacci, D.

Power flow studies are typically used to determine the steady state or operating conditions of power systems for specified sets of load and generation values, and is one of the most intensely used tools in power engineering. When the input conditions are uncertain, numerous scenarios need to be analyzed to cover the required range of uncertainty. Under such conditions, reliable solution algorithms that incorporate the effect of data uncertainty into the power flow analysis are required. To address this problem, this paper proposes a new solution methodology based on the use of affine arithmetic, which is an enhanced model for self-validated numerical analysis in which the quantities of interest are represented as affine combinations of certain primitive variables representing the sources of uncertainty in the data or approximations made during the computation. The application of this technique to the power flow problem is explained in detail, and several numerical results are presented and discussed, demonstrating the effectiveness of the proposed methodology, especially in comparison to previously proposed interval arithmetic's techniques.

Published in:

Power Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )