By Topic

Design and Optimization of Power-Gated Circuits With Autonomous Data Retention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Seomun ; Dept. of Electr. Eng., KAIST, Daejeon, South Korea ; Youngsoo Shin

Power gating has been widely employed to reduce subthreshold leakage. Data retention elements (flip-flops and isolation circuits) are used to preserve circuit states during standby mode, if the states are needed again after wake-up. These elements must be controlled by an external power management unit, causing a network of control signals implemented with extra wires and buffers. A power-gated circuit with autonomous data retention (APG) is proposed to remove the overhead involved in control signals. Retention elements in APG derive their control by detecting rising potential of virtual ground rails when power gating starts, i.e., they control themselves without explicit control signals. Design of retention elements for APG is addressed to facilitate safe capturing of circuit states. Experiments with 65-nm technology demonstrate that, compared to standard power gating, total wirelength, and average wiring congestion are reduced by 8.6% and 4.1% on average, respectively, at a cost of 6.8% area increase. In order to fast charge virtual ground rails, a pMOS switch driven by a short pulse is employed to directly provide charges to virtual ground. This helps retention elements avoid short-circuit current while making transition to standby mode. The optimization procedure for sizing pMOS switch and deciding pulse width is addressed, and assessed with 65-nm technology. Experiments show that, compared to standard power gating, APG reduces the delay to enter and exit the standby mode by 65.6% and 28.9%, respectively, with corresponding energy dissipation during the period cut by 46.1% and 36.5%. Standby mode leakage power consumption is also reduced by 15.8% on average.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:19 ,  Issue: 2 )