Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Thermal Degradation of Electroplated Nickel Thermal Microactuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, the thermal degradation of laterally operating thermal actuators made from electroplated nickel has been studied. The actuators investigated delivered a maximum displacement of ca. 20 mum at an average temperature of ~ 450degC , which is much lower than that of typical silicon-based microactuators. However, the magnitude of the displacement strongly depended on the frequency and voltage amplitude of the pulse signal applied. Back bending was observed at maximum temperatures as low as 240degC. Both forward and backward displacements increase as the applied power was increased up to a value of 60 mW; further increases led to reductions in the magnitudes of both displacements. Scanning electron microscopy clearly showed that the nickel beams began to deform and change their shape at this critical power level. Compressive stress is responsible for nickel pileup, while tensile stresses, generated upon removing the current, are responsible for necking at the hottest section of the hot arm of the device. Energy dispersive X-ray diffraction analysis also revealed the severe oxidation of Ni structure induced by Joule heating. The combination of plastic deformation and oxidation was responsible for the observed thermal degradation. Results indicate that nickel thermal microactuators should be operated below 200degC to avoid thermal degradation.

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 6 )