By Topic

A Three-Dimensional Precorrected FFT Algorithm for Fast Method of Moments Solutions of the Mixed-Potential Integral Equation in Layered Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vladimir Okhmatovski ; Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB, Canada ; Mengtao Yuan ; Ian Jeffrey ; Rodney Phelps

A three-dimensional pre-corrected fast Fourier transform (PFFT) algorithm for the rapid solution of the full-dyadic Michalski-Zheng's mixed potential integral equation is presented. The integral equation is discretized with the Rao-Wilton-Glisson (RWG) method of moments. Handling the method of moments interactions with the dyadic kernel is simplified via representation of the RWG functions in terms of barycentric shape functions. The proposed three-dimensional precorrected FFT method distributes two-dimensional FFT grids nonuniformly along the direction of stratification according to conductor locations within the layers. For P two-dimensional FFT grids each with an average of Np associated triangular elements the method exhibits O(P 2 Np logNp) computational complexity and O(P Np) memory usage. The low-frequency breakdown of the integral equation is eliminated via loop-tree decomposition. A unique combination of O(N logN) computational complexity, fully three-dimensional boundary-element modeling in layered substrates, and full-wave modeling from dc to multi-gigahertz frequencies makes the algorithm particularly useful for characterizing large interconnect networks embedded in multilayered substrates. The method is implemented as the electromagnetic solver in Cadence's Virtuoso RF Designer software.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:57 ,  Issue: 12 )