Cart (Loading....) | Create Account
Close category search window

Performance Analysis of Joint Radio Resource Management Strategies for Beyond 3G Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Del Monego, H.I. ; INESC Porto, Univ. do Porto, Porto, Portugal ; Oliveira, J.M.S. ; Ricardo, M.

In beyond 3G networks the user will not be aware of the access network technology used to provide a telecommunications service. Heterogeneous network technologies will be seamlessly integrated in one "common'' access network, enabling users to move around and continuously receive their subscribed services. In a commercial environment, this network evolution requires that a telecommunications operator jointly manages its networks resources to improve the service offered to the users and, at the same time, to increase its revenue. Starting from the UMTS and WLAN interconnection architecture defined by 3GPP, this paper analyzes the performance of a new joint radio resource management strategy, comparing it with two well-known strategies used in scenarios where both networks, the UMTS and the WLAN, are interconnected. The new strategy presented in the paper bases its decisions on criteria related to user mobility characteristics and the application characteristics. The strategy also introduces the possibility of renegotiating new calls and reallocating running calls from one access network to another. The performance analysis considers two traffic scenarios. One where only real-time applications are running and other which also introduces TCP applications. The comparison studies show the proposed strategy outperforms the other strategies in what concerns call blocking probability and applications QoS support. Besides, the proposed strategy tends to reduce the handoffs between networks.

Published in:

Next Generation Mobile Applications, Services and Technologies, 2009. NGMAST '09. Third International Conference on

Date of Conference:

15-18 Sept. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.