By Topic

Source localization in a waveguide using polynomial rooting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tabrikian, J. ; Dept. of Electr. Eng.-Syst., Tel Aviv Univ., Israel ; Messer, H.

Source localization in acoustic waveguides involves a multidimensional search procedure. We propose a new algorithm in which the search in the depth direction is replaced by polynomial rooting. Using the proposed algorithm, range and depth estimation by a vertical array requires a 1-D search procedure. For a 3-D localization problem (i.e., range, depth, and direction-of-arrival (DOA) estimation), the algorithm involves a 2-D search procedure. Consequently, the proposed algorithm requires significantly less computation than other methods that are based on a brute-force search procedure over the source location parameters. In order to evaluate the performance of the algorithm, an error analysis is carried out, and Monte-Carlo simulations are performed. The results are compared with the Cramer-Rao bound (CRB) and to the maximum likelihood (ML) simulation performance. The algorithm is shown to be efficient, while being computationally simpler than the ML or the Bartlett processors. The disadvantage of the algorithm is that its SNR threshold occurs in lower SNR than in the ML algorithm

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 8 )