Cart (Loading....) | Create Account
Close category search window

Full-rate cooperative communications with spatial diversity for half-duplex uplink relay channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ui-Kun Kwon ; POSTECH, Pohang, South Korea ; Chan-Ho Choi ; Gi-Hong Im

This paper proposes a full-rate cooperative communication technique with spatial diversity for single-carrier transmissions. In order to achieve both the spatial diversity and the full-rate, data streams are simultaneously transmitted through all direct and relay channels with different phase rotation and cyclic delay patterns. The phase rotation and cyclic delay patterns are derived in the sense of minimizing interlayer interference and a corresponding destination structure is presented for decoupling each layer at the destination. Simulation results show that the proposed technique achieves spatial diversity without sacrificing spectral efficiency and outperforms conventional full-rate cooperative communication techniques.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 11 )

Date of Publication:

November 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.