By Topic

Spectrum sensing in cognitive radio using goodness of fit testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haiquan Wang ; Coll. of Commun. Eng., Hangzhou Dianzi Univ., Hangzhou, China ; En-hui Yang ; Zhijin Zhao ; Wei Zhang

One of the most important challenges in cognitive radio is how to measure or sense the existence of a signal transmission in a specific channel, that is, how to conduct spectrum sensing. In this letter, we first formulate spectrum sensing as a goodness of fit testing problem, and then apply the Anderson-Darling test, one of goodness of fit tests, to derive a sensing method called Anderson-Darling sensing. It is shown by both analysis and numerical results that under the same sensing conditions and channel environments, Anderson-Darling sensing has much higher sensitivity to detect an existing signal than energy detector-based sensing, especially in a case where the received signal has a low signal-to-noise ratio (SNR) without prior knowledge of primary user signals.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 11 )