By Topic

New QoS and geographical routing in wireless biomedical sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Djamel Djenouri ; Department of Electronics and Telecommunications, NTNU, Trondheim, Norway ; Ilangko Balasingham

In this paper we deal with biomedical applications of wireless sensor networks, and propose a new quality of service (QoS) routing protocol. The protocol design relies on traffic diversity of these applications and ensures a differentiation routing using QoS metrics. It is based on modular and scalable approach, where the protocol operates in a distributed, localized, computation and memory efficient way. The data traffic is classified into several categories according to the required QoS metrics, where different routing metrics and techniques are accordingly suggested for each category. The protocol attempts for each packet to fulfill the required QoS metrics in a power-aware way, by locally selecting the best candidate. It employs memory and computation efficient estimators, and uses a multi-sink single-path approach to increase reliability. The main contribution of this paper is data traffic based QoS with regard to all the considered QoS metrics. To our best knowledge, this protocol is the first that makes use of the diversity in the data traffic while considering latency, reliability residual energy in the sensor nodes, and transmission power between sensor nodes as QoS metrics of the multi-objective problem. The proposed algorithm can operate with any MAC protocol, provided that it employs an ACK mechanism. Performance evaluation through a simulation study, comparing the new protocol with state-of-the QoS and localized protocols, show that it outperforms all the compared protocols.

Published in:

2009 Sixth International Conference on Broadband Communications, Networks, and Systems

Date of Conference:

14-16 Sept. 2009