By Topic

Exploiting Computational Resources in Distributed Heterogeneous Platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Teodoro, G. ; Dept. of Comput. Sci., Fed. Univ. of Minas Gerais, Belo Horizonte, Brazil ; Sachetto, R. ; Fireman, D. ; Guedes, D.
more authors

We have been witnessing a continuous growth of both heterogeneous computational platforms (e.g., Cell blades, or the joint use of traditional CPUs and GPUs) and multi- core processor architecture; and it is still an open question how applications can fully exploit such computational potential efficiently. In this paper we introduce a run-time environment and programming framework which supports the implementation of scalable and efficient parallel applications in such heterogeneous, distributed environments. We assess these issues through well-known kernels and actual applications that behave regularly and irregularly, which are not only relevant but also demanding in terms of computation and I/O. Moreover, the irregularity of these, as well as many other applications poses a challenge to the design and implementation of efficient parallel algorithms. Our experimental environment includes dual and octa-core machines augmented with GPUs and we evaluate our framework performance for standalone and distributed executions. The evaluation on a distributed environment has shown near to linear scale-ups for two data mining applications, while the applications performance, when using CPU and GPU, has been improved into around 25%, compared to the GPU-only versions.

Published in:

Computer Architecture and High Performance Computing, 2009. SBAC-PAD '09. 21st International Symposium on

Date of Conference:

28-31 Oct. 2009