By Topic

Multi-mission Path Re-planning for Multiple Unmanned Aerial Vehicles Based on Unexpected Events

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo-bo Meng ; Sch. of Electron. & Inf., Northwestern Polytech. Univ., Xi''an, China ; Xiaoguang Gao ; Yunhui Wang

Natural disasters such as forest fires, earthquakes, tsunamis, floods, hurricanes, and cyclones happen unexpectedly and bring out the worst influence on people. Unmanned Aerial Vehicles (UAVs) could be used under these disasters for surveillance, search and rescue. In order to have good performances in mission areas, effective algorithms are required in mission re-tasking and path re-planning to handle unanticipated events or any environmental disturbances. In this paper, a new algorithm is proposed to deal with path re-planning for multi-mission of multi-UAV under environments with unexpected events. A group of UAVs are considered to perform joint missions. Each UAV plans its own initial, optimal or sub-optimal path using Voronoi graph and Dijkstra algorithm. Our algorithm is then employed to assign a distinct task to each UAV and to re-plan its path based on new multi-mission requirement corresponding to some unexpected events. In addition to a theoretical analysis of the algorithm, the paper has also provided relevant simulation results which have shown that the algorithm can be used effectively for multiple cooperating UAVs' path re-planning under uncertain and dynamic disaster environments.

Published in:

Intelligent Human-Machine Systems and Cybernetics, 2009. IHMSC '09. International Conference on  (Volume:1 )

Date of Conference:

26-27 Aug. 2009