By Topic

Study on computational grids in placement of wind turbines using genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feng Wang ; Coll. of Water Conservancy & Hydropower Eng., Hohai Univ., Nanjing, China ; Deyou Liu ; Lihua Zeng

To optimize the placement of wind turbines using a genetic algorithm for the fixed size of wind farm, the appropriate computational grids are the basis of the succeeding work. The optimized scheme was tightly restricted by the rationality and accuracy of computational grids. In this paper, based on the consideration of actual wind and wake characteristics of wind turbines, the (a) shape of the grids, (b) arranging the direction of the grids, and (c) the density of the grids were introduced to study the effect of computation grids on the optimization results. Furthermore, the grids' division method in the scheme's optimization of wind turbines placement under different conditions was discussed to increase the power capacity of the wind farm to obtain the maximum benefit of the investment.

Published in:

World Non-Grid-Connected Wind Power and Energy Conference, 2009. WNWEC 2009

Date of Conference:

24-26 Sept. 2009